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SUMMARY

The flow of the viscous layer of ablating material on the surface

of a body of revolution entering the atmosphere was investigated prima-

rily in regard to phenomena over the entire body, in order to find the

primary effect of the decelerating force on the flow and heat transfer.

The phenomena were shown to be essentially unsteady exclusive of the

region near the forward stagnation point. The significant dynamical

parameters were determined and some solutions were obtained for various

deceleration rates and times. These solutions show that deceleration

causes an accumulation of ablating material in a region downstream of

the stagnation point, and for this reason the thin-boundary-layer ap-

proximation will eventually fail to be appropriate.

INTRODUCTION

The ablation of skin material has been extensively studied as a

means of reducing the heat transfer to reentry-type vehicles. For the

most part analytical studies have been restricted to consideration of

the stagnation region of bodies. On the basis of such an analysis

(ref. 1)_ it was shown that for materials which melt before they vapor-

ize, the presence of the liquid layer cannot be ignored in evaluating

the characteristics of this type of thermal shield.

Although the liquid layer can be subject to a strong body force be-

cause of accelerations and decelerations of the vehicle, its effects on

the flow and heat transfer have not been investigated in general. In

determining conditions away from the stagnation region, it is particularly

important to include the body force effects, because for vehicle decel-

erations the body-force opposes the downstream flow of liquid; in fact,

it was recently pointed out in reference 2 that under certain conditions

the liquid will be forced upstream and can eventually accumulate at some

position away from the nose of the body. A qualitative discussion of



deceleration effects is given in reference Sand a similarity solution
of the special case of a liquid layer subject to deceleration on a sur-
face in a quasi-steady incompressible constant-pressure-gradient stream
is presented in reference 4. Integral methods have been used to study
the problem about more general bodies in references S and 6. In refer-
ence 2 it was pointed out that someimportant aspects of the problem
were omitted in the analyses of references 4 and 5. In particular, the
accumulation of liquid was precluded by the similarity assumption in
reference 4 and by the assumedvelocity profile in reference S. Although
the basic equations in reference 6 contain a deceleration term, no dis-
cussion of its significance is given therein; it will be shownsubse-
quently that in a steady-state analysis of the problem, such as refer-
ence 6, no solutions containing significant deceleration effects can be
obtained_

The purpose of this report is to extend the two-dimensional con-
siderations of reference 2 to axisymmetric bodies and to present the
principal novel features of the flow and heat transfer that result from
a general treatment of the deceleration effects.
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ANALYSIS

Conditions of Problem

The specific problem to be analyzed is the flow and heat transfer

of a glassy viscous film of ablating material on the exterior surface

of a body of revolution or symmetric two-dimensional body that enters

the atmosphere at high speed and that experiences a large deceleration

a_d surface heating. The viscosity of the liquid layer increases from

some value at the gas-liquid interface to very large values near the

body because of the temperature change. Density, specific heat, and

thermal conductivity are assumed constant. For suitable materials and

expected physical conditions the thickness of the region where the vis-

cosity is low enough for the ablating material to be considered as fluid

is very small compared with the body scale.

Some additional assumptions are made in the case to be analyzed in

detail in order to show the physical phenomena most clearly and simply.

In particular, the body is assumed to be subjected to a constant decel-

eration, although in an actual case the trajectory will determine the

deceleration rate. Furthermore, the temperature at the gas-liquid inter-

face is assumed constant, and the vaporization rate will be neglected;

it will later be indicated how these restrictions might be relaxed for a

more realistic calculation.

Because the liquid-layer thickness is small compared with the radius

of curvature of the body, a system of coordinates parallel to and normal
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to the gas-liquid interface can be considered as a Cartesian coordinate

system (see fig. 1). The interface is taken to be the surface y = O,

and y increases into the liquid. The acceleration terms resulting

from the unsteady motion of the interface relative to the body are neg-

lected, but the velocity is considered steady at any instant.

The resulting equations of motion for the liquid layer are:

Continuity:

_-_ RCU + RCV = 0 (1)

where c = 0 for two-dimensional bodies and c -- 1 for axisymmetric

bodies.

Momentum:

- =-_ +

(2)

(_ _v _vp +u_f+v_ = -_Z "+2 +_i_" +
(3)

Energy, with thermal expansion of the liquid neglected:

_+U_+V = + +¢
P°p _,_x2 _2 /

(,,.)

Dissipation:

_=_" +2 +2_y+ +

(All symbols are defined in appendix A.) The transformation from sta-

tionary coordinates to accelerating coordinates fixed in the body is

equivalent to the introduction of an equivalent body force pA per unit

volume with the components of equations (2) and (5).



Scaling and Reduction of Equation

In order to comparethe various terms and to determine their rela-
tive magnitudes, all variables will be transformed to dimensionless
variables in such a way that they are of order l; the magnitudes of the
terms will then be indicated by the fixed coefficients.

For X
L, so that

and R the clear choice of scale is the body scale size

X = xL; R = rL

Sealing the pressure, temperature, and viscosity by the values at the

stagnation point (X = O) interface (Y = O) gives

T = ToT; P = Pop; _ = _0 _

The scales for Y, _, U 3 and V will be unspecified for the present but

indicated by LS, o, W, and Fj respectively, so that

Y = LSy; t = at; U = Wu; V = Fv

The scale L5 is related to the liquld-layer thickness. From the con-

tinuity equation,

F = 5W

The first momentum equation (2) is employed to estimate the magnitude of

W': Because the viscous fluid attains only small velocities, it is an-

ticipated that the inertia terms can be neglected and that the shear and

pressure forces are of the ssme order of magnitude. Thus

Po w
L L252

!

po

or

W = 52; F = 53

\ oj

Because the inertia terms are small, the time scale L/W obtained from

the first term of the inertia equations is inadequate. The only remain-

ing term for selection of the time scale is that of the energy equation.

This is the most important unsteady effect, since the heating of the

liquid will determine the rate of softening and hence the rate of velocity
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increase. Because of the slow motion, the rate of temperature increase

should be balanced by the conduction term. Therefore

The remaining scale factor 5 will be subsequently identified. In

terms of the new variable the equations are

_-_ rCu + rev = 0

vq_r + RePr5 (u _u

(5)

(6)

+ RePr52(u, _xx + v - 5 _ g = - + 25 2

(7)

+ [_,_; _ Tx + _,_; ] +
(8)

The small terms are deleted from these equations on the assumptions

W 2

that 5 << !, Re5 2 << i, Pr >> i, and Pr CpT---_<< i. The analysis herein

will be applied to sudden heating of the interface, where _T/_t is

initially indefinitely large at y = 0. Because of the small extent of

the region of softened material, however, _u/St and _v/St are not

indefinitely large. The assumptions thus yield

(9)
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dr= 5g_~ 0 (i0)

(ll)

as well as the unaltered continuity equation (5).

The fact that the main unsteady effect in the ablation process is
due to the unsteady term in the energy equation was also mentioned after
a qualitative discussion in the stagnation-polnt analysis of reference 7.
Because of equation (lO)_ p is assumedconstant through the liquid layer
at any fixed station X on the body and is equal to its value at the
interface (p = p(X) = Pi(X) = p(X,O)). The Newtonian pressure distribu-
tion is used for p(X). The importance of deceleration is seen to depend
on the magnitude of the parameter g (i.e., m ApL/P0), which represents
the ratio of the deceleration body force to the pressure force. From
Newtonian fluid mechanics the decelerating force on the body is of order
POS, where S is the projected cross-sectional area of the body. If
LS is the body volume and PBLS the mass (PB is average massdensity),
then the deceleration is

PO p
A = -- or g =-- (12)

Thus for a reentering rocket, g can be very large, whereas for a

meteorite, g is of order 1. The second parameter p that appears in

equation (ll) indicates the importance of heat convection relative to

heat conduction and depends on shear stress as well as on properties

of the liquid layer.

The initial conditions of the body for the sudden application of

boundary-layer heating are determined by the assumption of a cold glassy

layer. The initial temperature is assumed to be O, so that

t = O; T _ u = v = 0 (15)

At the interior of the body (y _ _), the temperature remains low, but

the melting away of the liquid layer results in a relative velocity v_

between the interface and the body. Therefore

y _ _; T = u = O; v = v_ (14)

!

[k"
F



?4

I

If v_ < 0, the glassy liquid is being carried away; if v_ > 0j the

liquid is accumulating. Because of symmetry at the stagnation point,

_T au av
x : o; Tx: _: _7: o (15)

At the interface, the temperature and shear stress of the liquid are

equal to those in the gas:

y = o; Yg= Yi;

(16)

And finally the heat-balance condition is

= k + DViHkg i i
(17)

as a restatement of equation (18) of reference 8. The convection of en-

thalpy by diffusion has been neglected, since a noncatalytic wall is

assumed. Al_o_ the radiation terms in the energy equation that are in-

cluded in reference 6 have been neglected.

If _ is a known function of x and y_ equation (9) can be inte-

grated for u to yield

au
_-- -_i+ fy (18)

u = f Y dy - Ti dy (19)

If some dependence of _ on y is assumed_ equation (19) will yield a

solution for u, which when inserted into the continuity equation (8)

results in a first-order differential equation in x of the boundary

conditions with explicit dependence of y. The variation with x thus

originates in conditions in the gaseous boundary layer. The integral

of equation (5) is

i m U

V - Voo r E _x

(20)
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v i - v_ = rc _ u

(21)

However, the viscosity depends on the temperature, which is found as a

solution of a partial differential equation with x, y, and t as in-

dependent variables. Because of the complicated form for the convection

terms, the general solution of the energy equation is difficult. In ref-

erence 6 an integral approach has been used that relates the boundary

values and gives no profiles_ in the present case, however, because of

the requirement that sane details of the structure of the liquid layer

be found, it was considered desirable to simplify the differential equa-

tion and to solve this approximate form in detail. In references i

and 9, io which the problem is analyzed at the stagnation point, where

8T/Sx = u = O, and for steady-state conditions, the equation is sim-

plified by setting v = v_. In the present case, the same substitution

is made with justification as follows: In the first approximation, the

interface temperature Ti(X,t) is assumed to vary only slowly with X.

0nly in the thin region where T - T i are there appreciable flows, so

that the effect of convection in this region of nearly uniform tempera-

ture is small. The only important effect of convection is the transport

of the high-temperature interface toward the body as the viscous liquid

_ayer is swept away or evaporated. The energy equation with these assump-

tions reduces to

8T 8T _2T

+ = -7 (22)

A discussion of the errors arising from this approximation is given in

appendix B.

The inadequacy of the steady-state approach for application over

the whole body (suggested in ref. 9 and used in ref. 6) can be seen by

integration of equation (22). For the steady state, there is obtained

from equation (22)

d__T (dy) e_V_Ydy i

This equation shows that dT/dy is unbounded as y _ _ in regions of

X where v_ > O. Such regions can exist on decelerating bodies, as

previously described in reference 2. At the stagnation region, v_ < O,

s9 that no difficulty arises eit_ner at X _ 0 or A = 0. Although the

energy equation (22) from which this result is derived is of questionable

accuracy near the interface, it closely describes conditions for large

!
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values of y. The physical interpretation of this result is as follows:

If a long body under steady deceleration is imagined, it is clear that

in the cylindrical part no pressure gradient exists and that because of

the thick boundary layer the surface shear forces are small. Consequently,

the dominating force is a deceleration force acting as a gravitational

field on a layer of liquid clinging to the wall. This liquid will there-

fore slump forward. Because of the equivalence of conditions at all lo-

cations, the motion will approximate that of uniform layers of fluid

sliding over each other. The continued application of heat will cause a

growth in thickness of the thermal layer on this section of the body, so

that steady-state conditions are never attained. Also_ the forward slump-

ing flow from the back region and the backward-swept flow from the front

region will meet at some intermediate station where the fluid will con-

tinue to accumulate. (This result will be modified when the accumulation

of material is sufficient to alter 'the pressure distribution.) This re-

gion will also not approach a steady-state condition. Near the forward

stagnation point, a steady-state solution is nearly attained.

No details except results of the computations made in reference 6

are contained therein, but because of the reasons cited Previously those
numerical results could not have included deceleration effects. The fact

that no discussion of these effects is given therein seems to substantiate

this supposition.

Method of Solution

The boundary conditions for calculation of the liquid layer are not

all known a priori. At the interface there must be a match of tempera-

ture, shear stress, heat flow, and mass evaporation rate. If a tempera-

ture distribution Ti(x,t) is assumed, all other quantities may be calcu-

lated from solutions of gaseous boundary layer. Various methods of making

this match can be used; in addition to the description of some of these

methods contained in the previously mentioned references, a comprehensive

discussion of this problem is presented in reference 8. In the present

analysis the gas boundary-layer characteristics of reference l0 were used

for the assumed Newtonian pressure distribution, and hence the calcula-

tions (but not the analysis) are restricted to the class of bodies for

which those similarity solutions apply. A representative two-dimensional

body of this class is shown in reference 2; for axisymmetric bodies the

Mangler transformation is applied to permit use of the results of refer-

ence lO. Since this procedure of using exact similar gas solutions is

rather lengthy and involved and is not so good as direct use of the tables

of reference 10, which can be used for anybody shape, the details will

be omitted; the axisymmetric body of this class studied herein is shown

in figure 2.
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Whenthe liquid-layer flow and heat-transfer equations are solved,
a discrepancy maybe expected to exist in the heat balance for each as-
sumedinterface temperature distribution. From several assumptions of
the interface temperature distribution Ti(X,t) it should be possible to
find a distribution by interpolation for which the heat balance conditions
are satisfied. This procedure could be applied at each instant of time by
starting with the value at X = 0 and working downstresmby integration
of the continuity equation. For the problem considered herein, of sudden
application of the hot gas, a selection of T(X,O,_) = 4000 ° F (and

T i = 1.O) was chosen in order to permit a solution that would indicate

the main kinematic features of the liquid glass layer as a whole and to

show time and x-variation of the heat-flux parameter (ST/SY)i. It was

also assumed that there is no evaporation, that is,

v i = v(x,O,t) = 0

The energy equation is integrated directly to give

1 __ + _v_/_ + erfc 7T = _v_y erfc _- - _v (23)

for the assumption that both T i and v_ are independent of time; these

assumptions are more realistic for t large than for initial conditions.

Completing the solution requires an explicit form for the dependence

of "_ _ on y. For this purpose, assume

= _i exp(ay + by 2)

The functions a and b are determined from the assumed dependence of

viscosity on the temperature:

Differentiating yields

!
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From equation (25) the required gradient T' is found for identifying

a:

O.1

,-4
!

l(_) ---T' 116 erfc I_v}_, 1 2 -_ 2v2t/4]
(24)

The quadratic term is determined by the temperature at large values

of y, where equation (25) is approximated by

T 2
m N

1exp + 2 - "

_L 62v2_tS/2

y

The dominating factor in determining the rate of decrease of the temper-

ature at large y is

2

exp -y
4t

Hence b -- n/4t is chosen, from which

_= _i ex_[-n(T'y- Y2)IAt (25)

With this viscosity relation, equation (19) may be explicitly integrated

to

U _-

where the abbreviations are

O- Z O-, ZeZ or  Z)
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Also, by integration of the continuity equation_

e-ny2/4t _ _reenyT11. f[y + 0

At the interface v = vi_ Z = - _/_T' m Zi, 8 = 8i, and

(27)
!

['3

t)l _cei _f l + 2t_, e_ (28)
v i - v= = n_rC _iT' 2 + T

At the stagnation point r = x, f = x(df/dx)o, T i = x(dTi/dx)0, _i = l,

T' = TS_ and ei = constant, so that

=- TL t )o k -)o+--2ntT' (26a)

vi(O ) - v_(0) = n2T&21+ 6 e0 _/0kn-_ + 2tT8 -eO +

The limiting steady-state case is obtained when t

Zi = - _/_T' is large, and

is large_

1.5 i .5 ! .5
(9N i ----* ! - -_ i

Z2 nt(T'- 2_t)2 ntT'2

(28a)

At this point the problem is completely solved for dependence of

u, v, and T on x, y, and t, provided that the dependence of the

boundary parameters v_, T', Ti, vi, and Ti on the variables X and

is found. For the approximate solution3 v i = 0, but, in general, the

temperature balance Ti = Tg will determine the vapor pressure of the

components of the liquid glass, and the diffusion rate through the

boundary layer (see refs. 9 and ll) will depend on the external condi-

tions and the wall temperature. Similarly, the shear stress and heat
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transfer will depend on Ti and external conditions. The terms T'
and v_ are left to be found from equations (24) and (£8).

t_

Oa
H
!

Scale of b

Since the equations are available for a solution, it is possible at

this point to find an approximate_ particular solution from which a rea-

sonable selection can be made for the arbitrary thickness parameter 8,

the ratio of y scale to x scale. This estimate is made in appendix C.

Numerical Procedure

In order to obtain the parameters v_ and T', which are required

before u, v, and T can be calculated, equations (24) and (28) must be

solved simultaneously. The discussion is facilitated by writing the dif-

ferential equation (28) in the form

: ! _ rC(Bf + c_i)
v - vi re

(29)

where B and C are functions of T' and t. On differentiation,

v_ - vi=B +_ f +r c_-: + r ( as ,_c '_a,z,,]av_,f + "i
(3o)

In the particular problem solved (the first approximation where Ti = T--0'

dTo/dt = O) the coefficient of dv_/dx was a small quantity; at x = 0,

the conditions f = Ti = 0 cause the coefficient to vanish there. The

usual integration procedure was therefore unsuitable in that successive

approximations to the solution at a point frequently failed to converge.

_quation (50) was therefore solved for the term v_ by writing the equa-

tion with numerical evaluation of the derivative from the argument itself:

This method of solution was inadequate in an intermediate region

for certain cases of large values of time and deceleration; the possible

cause of this failure will be discussed in the RESULTS. In those cases

it was possible to begin the solution at x _ _ and leave an intermediate

region with the solution undetermined. For large values of x_ it was

assumed that v_ = dv_/dx = 0.



RESULTS

In the example calculated, the ablating material was taken to be
Pyrex and the conditions assumedwere as follows:

Flight Machnumber ........................ iS.O
Altitude, ft .......................... 90,000
Characteristic length, L = RO, ft ................. i
Density, p, ib/cu ft ....................... 131
Conductivity, k, Btu/(ft)(OF)(sec) ............. 1.71×10-3
Specific heat (pressure constant), cp, Btu/(ib)(OF) ....... 0.29
Coefficient of viscosity at stagnatibn point, T0 (at 4000° F),
slug/(ft)(sec)......................... o.o7

Acceleration rate, A, gravity units (g's) ......... -70, -23.2

Body shape is shown in figure 2. From these conditions,

Prandtl number, Pr ........................ 383

Reynolds number, Re .................. 79.6

Scaling factor, 5 ................... 2.510×i0 -3

Heat-convection parameter, _ .................. 0.1929

Scaling factor, W, ft/sec ................... 1.370

Scaling factor, F, ft/sec ................ 3.4¢6Xi0 -3

Dimensionless acceleration parameter, g .......... -0.6, -0.2

For Pyrex under the conditions of the problem, a value of n of 8 was

assumed. The gaseous boundary layer adjoining the liquid layer was as-

sumed to be laminar throughout its entire extent.

Development of the normal interface velocity v_ and the interface

normal temperature gradient T' for the condition of no deceleration is

shown in figure 3. The ablation velocity v_ indicates a steady in-

crease in ablation rate at the stagnation point to a final value of

v_ ~ -1.25 (corresponding to removal of material at the rate of 0.052

in./sec). Farther downstream, the material accumulates in a slight

bump, which is swept downstream as a kind of single wave. This phenom-

enon may be understood to result from the decrease in shear stress with

downstream distance; the backflow induced by the pressure increases with

time because of the thickening of the softened layer on which the pres-

sure acts. With increasing time, the temperature gradient decreases from

a relatively high uniform value, as might be expected from the initial

sudden application of T = 1 and relatively small convection, to a lower

steady-state value near the stagnation region and zero value far back on

the body. The temperature gradients for very short times cannot be ac-

curate, because the boundary layer, as a result of thickening, will pro-

vide gradients that decrease as X increases, whereas the figure shows

constant values. Conditions in the stagnation region are approximately

steady state at t = 29 (corresponding to _ = 4.1 sec). At all times

the most severe thermal load is imposed at the forward stagnation point.

This occurrence is easily understood because (1) the thickness of the

!
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gaseous boundary layer is a mininumnear the stagnation point, and

(2) there is a large negative normal velocity, which results from the

flowing away of material and which reduces the thickness of the thermal

layer.

Details of the structure of the viscous layer are shown in figure 4.

All temperature profiles are about the same for short time, but with in-

creasing time the stagnation-point profile approaches a steady-state

curve, whereas the others are all nearly the same as for unsteady heating

of a slab. (After X = 0, the next profile is selected for such a value

of X that v_ = 0; therefore, ui is nearly a maximum there.)

Deceleration of the body causes changes in the behavior of the liquid

layer as shown by comparison of figures 5 to 7 with previously mentioned

results. The normal interface velocity at the stagnation point is reduced

6 percent for maximum deceleration. Farther back the calculations break

down in a region where the normal interface velocity v_ exhibits large

gradients. The inadequacy of the equations used herein to describe the

condition in this region probably arises from the failure of the boundary-

layer assumption because of the accumulation of fluid and the thickening of

the liquid layer. The results of the present calculations show this re-

gion of large positive normal velocity v_, which results from the arrival

of the fluid from the forward section by boundary-layer drag and from the

slumping forward of material from the back end because of deceleration;

at this location the forces balance. The accumulation of liquid into a

bump maybe directly inferred from the normal interface velocity v_

curves of figures 5(a) and 6(a). Definite values of v_ and the growth

of the bump size cannot be given because of the failure of the backward

and forward solutions to coalesce, but order of magnitude interpretation

of the curves indicates the growth rate to be comparable with ablation

rate at the stagnation region. Calculations could be made downstream of

the critical region because of the small influence of the derivative and

the resulting local character of the solution.

The failure of the solutions obtained by forward and rearward inte-

gration to match in the region of liquid accumulation is not surprising.

In general, two asymptotic solutions (here for small and large distances

from the stagnation point) cannot be joined without careful analysis.

Sometimes the matching is further complicated because of the occurrence

of a singularity in the intermediate region due to the omission of terms

in the asymptotic equations that are significant there. Matching the

asymptotic solutions properly in such a region requires that the analytic

form of the solution there must be found. For the present problem there

appears to be a distinct possibility of finding the solution of the

Navler-Stokes equations in this accumulation region_ because the inertia

terms should be negligible there. Further consideration is being given

to this point.
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The interface temperature gradient approachesvery small values at
the bumpbecause of the accumulation of the hottest liquid there. The
temperature gradient at the stagnation point is reduced only 3.5 percent
for maximumdeceleration under the conditions of the calculations.

Both the velocity and the temperature profiles for high deceleration
rates show clearly the dissimilarity of shape at various locations; there
is even a case of flow reversal that results from the opposing effects of
surface shear and body force. It is clear that the assumption of similar
profiles as in reference 4 is unsuitable.

A large accumulation of material in a bumpwill probably not be real-
ized in a real situation because it would be ripped off by the airstream
if it grows sufficiently large. The probability of this occurrence is
enhancedfor smaller bodies, as maybe seen by finding the effect of
the body size on the scaling factors. The normal velocity scale
F = (PoL/_0)53 is independent of the body size, and therefore the rela-
tive magnitude of the bumpvaries inversely as the body size; thus on
re--_ction of L by a factor of lO0 to a diameter of 1/4 inch, the rate
of growth of the bumpof the order of 0.05 inch per second is very large.
The body scale has an additional effect on the gaseousboundary layer in

!

that the shear varies as L-1/2. This variation tends to push the bump

downstresmand to increase the forward area from which material is accu-

mulating as well as the flow rate u. These effects also enhance the

rate of growth of the bump in smaller bodies as compared with larger ones.

Since meteorites are dense, the deceleration rate is low (g = 0(1)) ac-

cording to equation (12) and will tend to reduce the effect.

The heat flow from the gas to the liquid was calculated at the stag-

nation point to be 55,200 Btu per square foot per second by the method

of reference 12, and the results of reference 8 giving the ratio of heat-

transfer rate over a hemisphere to that at the stagnation point were used

to estimate the value elsewhere. If vaporization is neglected, the tem-

perature gradient in the liquid, at the interface is then 311,000 ° F per

foot. On a dimensionless basis, the stagnation-point temperature gradient

approaches the limit

5L
T' = 511,000 _---= 0.1755

Ti

This value and those at several other locations are shown in figure 5.

Thus, the heat load estimated from the liquid layer herein is too high.

This error results from having taken too high a value for the interface

temperature.

The temperature gradient of the liquid at the interface will depend

on the ablation rate v, which, through the viscosity, will depend

!
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strongly on the temperature. An assumption of a lower temperature will

thus greatly reduce the interface temperature gradient and heat flow;

closer agreement with other results (ref. 9) can then be expected.

For initial conditions (t small), the correction required is much

greater; the corrected temperature will therefore rise from a low initial

value to the final equilibrium value.

O4

!

SUMMARY OF RESULTS

Analysis of the flow of a viscous layer of fluid on a body subjected

to sudden atmospheric heating and deceleration yielded the following re-

sults:

i. Flow, temperature, and heat transfer in the liquid layer depended

on the deceleration parameter_ the heat-convection parameter, and the body

shape, in addition to those quantities already found for the steady-state

condition at the stagnation point.

2. A steady-state solution was possible only in the forward part of

the body where the ablation process was removing rather than accumulating

material. On the aft part an unsteady solution was required.

3. Similarity solutions were impossible; the velocity and temper-

ature profiles varied radically in shape from one portion of the body to

another and at different instants of time.

4. The heaviest heat load and ablation rate occurred at the stagna-

tion point_ deceleration affected these values slightly.

5. An accumulation of fluid occurred in the region where body, shear,

and pressure forces were approximately balanced. This accumulation

might cause a substantial change in the body shape for small bodies in

which the fluid would be blown off a shoulder rather than flow off the

back end.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, March 13, 1962
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APPENDIXA

A

B,C

Cp

D,E

F

SYMBOLS

A bar over a s_bol or use of a capital letter indicates a quantity
with dimensions. Absence of the bar or use of a lower case letter indi-
cates a dimensio_ess quantity - the dimension_ quantity divided by an
appropriate sere factor. Bars in this sense are omitted from this list.

acceleration rate of body, ft/sec2; scaling factor, Po/PL

not_ion quantity; compareeqs. (28) and (29)

specific heat of liquid (pressure const_t), Btu/(slug)(_)

notation quantity; compareeqs. (30) and (S1)

scaling factor for V

f dimensio_ess body force I f = dPdx- g L -

g dimensio_ess acceleration parameter, ApL_o

H heat of vaporization of liquid, Btu/slug

k conductivity of liquid, (Btu)(ft)/(sq ft)(sec)(_]

L characteristic length of body, ft

n index in viscosity-temperature relation (_/_0 = (T/WO)-n)

P pressure, lb/sq ft; scaling factor PO

Pr Prandt! n_ber of liquid, Cp_O/k

PO pressure at X = 0, _/sq ft

p dimensio_ess pressure, P_O

R distance _om axis of body to surface, ft_ scaling factor, L

Re Reynolds number of liquid layer, P_/_O

r dimensio_ess v_me of R_ r = R/L
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!

S

S i

T

T

W |

t

U

U

V

V

v_

W

X

X

Y

Y

Z

8

projected cross-sectional area of body

weighting factor of value of function of X at X = X i for calcu-
lating derivative of function

dimensionless temperature, T/To

temperature, OR; scaling factor, _0

dimensionless time variable

sec; scaling factor, a = (pepL2/k)5 2time,

velocity of fluid parallel to X, ft/sec; scaling factor, W

dimensionless U variable; u = U/W

velocity of fluid normal to body surface, relative to interface,
ft/sec; scaling factor, W_

dimensionless V variable; v = V/W8

ablation velocity at interface with respect to body, dimensionless

scaling factor for U; W = (PoL/_o)5 2, ft/sec

distance along body surface measured from stagnation point in plane

containing body axis, ft; scaling factor, L

X/L

distance normal to body surface measured from interface inward, ft;

scaling factor, L8

heat-convection parameter, Pr Re 5 2

scaling factor for distance normal to interface,

8= [(i+ dimensionless



2O

e 0 for two-dimensional problem, i for three-dimensional case

8 2Z2(I- _/_ ZeZ2 erfc Z)

coefficient of viscosity

p density of liquid, slug/cu ft

factor for time, _ = (DCpL2/k)52, secscaling

shear stress, ib/sq ft; scaling factor, PO5

¢ dissipation function; scaling factor, _oW2/L252

Subscripts:

g gas

i interface between liquid and gas

0 stagnation point
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APPENDIXB

!

MAGNITUDE OF ERRORS THAT ARISE IN TKE

APPROXIMATE ENERGY EQUATION

An error arises from the use of the approximate form of the energy

equation (22) in place of the more accurate form (ll). Physically this

approximation corresponds to consideration of heat convection resulting

from motion of the thermal layer as a whole, while the convection arising

from details of the internal motion in the liquid layer is neglected.

Because convection is unimportant in the initial period (t small) when

the glassy layer is first beginning to soften, the discussion is limited

to the steady-state condition with the assumption that v_ < O. The

method of this report (eq. (22)) is first applied to these special condi-

tions, and then a parallel calculation is made for the more exact form,

followed by an estimate of the effect of the differences.

The approximate form

Tyy= _v_Ty

is integrated to

log _i = _v_y

Then

_/0 (Ty)i

from which the interface gradient is

(Ty) i

T_pprox" m Ti - _v_

For the more exact form,

l°g_i=
+
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If it iS assumedthat T/Ti is a function of Y/ST, where 5T is the
thickness of the thermal layer, and that the velocity layer thickness
5v is proportional to ST, then with the further assumption that
8Ti/dx _ O, equation (22) is integrated to

T d5v
log_= _ _uy dy

5v

The velocity layer thickness 5v describes the region where
the order of ui and it maybe defined as

1/ u\

u is of

This quantity is distinguished from the constant scaling factor 5 in

that 5v is a variable function of X and t, and is scaled by the

length 5L. Similarly ST maybe defined in terms of the initial tem-

perature gradient

5_I = -T '

For the estimate of the magnitude of the error the following approxima-

tions for the velocity layer (y < 5v) are used:

u = uie'Y/Sv; v= v_o(l - e -y/Sv)

from which

log _i _ _ {v=[y - $v(l- e'Y/bv)] - _ _ _[1 - (+ _)e-Y/_}

Because the temperature gradient varies only slightly in the velocity

layer,

!

DO
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OJ

!

which yields the approximation

The temperature is obtained from the gradient by expanding in power series

the exponentials in the preceding equation and retaining the quadratic

terms. Integration of the resulting expression yields

For the region y > _v_ if the approximation v = v_ u = 0 is used_

Tyy= _V_Ty

Ty = Ke _v_y

T _
k e_V_Y= LY_
_v_ _v_

If values of

at the point

TS/T from the inner and the outer solutions are now matched

y = _,

[ 6v_Sv aSv (i _)]T' I + _u i _-- 5v -e
_Voo = _-.

I - _ _ - + ui
T' = - ---g-v_ -

For the magnitudes involved_ the term in _2 may be neglected. The

variation of the term in _ is such that a maximum value can be expected

at the stagnation point_ since u i d_v/dX is positive_ going to zero at

x = O_ and v_ is negative with a maximum magnitude there. Thus the

maximum error (at x = O) is

T_pprox" - T' 0.632 5v

T' ~ -0.632 PSvV _ ~ 5T
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where the approximation

-i -I
--

has been utilized.

Examination of the detailed calculations near x = 0 for no decel-

eration and for t large shows 5v/5 T ~ 0.i. Thus Tapprox.' is too

large by about 6 percent. At y = 5v the temperature has changed by ap-

proximately the ratio 5v/5 T _ 0.i; consequently, the maximum error in T

is 0.6 percent, and is less for y _ 5v.

Equations (26a) and (28a) show that u i has terms in I/T' and

(i/T') 2 which lead to errors of between 8 and 12 percent. Correspond-

ingly, the ablation velocity is too small by an amount between 12 and 18

percent. All these errors are less at regions other than that near the

front stagnation point and for shorter times when the velocities have
not attained their maximum values. The errors are also reduced for ma-

terials having a larger index n of viscosity dependence on the tempera-

ture, since the hypothesis of uniform temperature in the convective ve-

locity layer is more closely satisfied for such fluids.

!

DO
p_
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APPENDIX C

D--

Cq

!

SCAI_ OF

The scale of 8 is selected in such a way that the requirement

v_ = 0(i) is satisfied. For this purpose v_ = -i is chosen at X = 0

for t = _, on the assumption of v i negligible and (df/dX) 0 = 0 (large

radius of curvature at the stagnation point). With these assumptions;

equation (24) reduces to

T$ = -_ = -PrRe82

and equation (28a) to

1 + _{d_i]

_$_=_-_--<_o

From these t_o equations

Re and (dTi/dX) 0 is

T6 is eliminated. The involvement of 5 in

pL2Po 52Re =PLw-- --

With _i;O = i;

ri_flen

/_--/o_ _ _-/o

--2

l+e _0 {d_i_

2

= Pr _ PO 5_

7_
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